Maths Exam

1. Solution of linear equations

We have the following equations: $$\begin{eqnarray} 4 x +6y &=& 2 \\ 4 x +4y &=& 2 \end{eqnarray}$$
Correct Answer
$$ x=\frac{1}{2}, y=0 $$

2. Differentiation A

Differentiate the following equation: $$\exp\left(\exp\left(x\right)\sqrt{x}\right)$$
Correct Answer
$$\exp\left(\exp\left(x\right)\sqrt{x}\right)\left(\exp\left(x\right)\sqrt{x} + \frac{\exp\left(x\right)}{2\sqrt{x}}\right)$$

3. Differentiation A

Differentiate the following equation: $$\cos\left(\exp\left(\frac{-6}{x}\right)\right)$$
Correct Answer
$$\frac{-6\sin\left(\exp\left(\frac{-6}{x}\right)\right)\exp\left(\frac{-6}{x}\right)}{{x}^{2}}$$

4. Differentiation B

Differentiate the following equation: $$\exp\left(4x\right)\sin\left(\frac{(-x)}{5}\right)$$
Correct Answer
$$\frac{20\exp\left(4x\right)\sin\left(\frac{(-x)}{5}\right) - \exp\left(4x\right)\cos\left(\frac{(-x)}{5}\right)}{5}$$

5. Integration

Please carry out the following integral: $$ \int \frac{6}{x - 6} dx$$
Correct Answer
$$ null $$

6. Integration

Please carry out the following integral: $$ \int \ln\left(-6x - 2\right) dx$$
Correct Answer
$$ \frac{(-\left(\left(-6x - 2\right)\ln\left(-6x - 2\right) - \left(-6x - 2\right)\right))}{6} $$

7. Consider the following differential equation: $$ 4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 2y = 0 $$

Find the general solution to the above equation.
Correct Answer
$$ \exp\left(\frac{x}{2}\right)\left(A\sin\left(\frac{x}{2}\right) + B\cos\left(\frac{x}{2}\right)\right) $$

8. Consider the following series: $$ \sum_{j=0}^{15} -6\left(j + 6\right) $$

What does the sum evaluate to?
Correct Answer
$$ -1296$$

9. Solution of linear equations

We have the following equations: $$\begin{eqnarray} 4 x +6y &=& 3 \\ -x -3 y &=& 2 \end{eqnarray}$$
Correct Answer
$$ x=\frac{7}{2}, y=\frac{-11}{6} $$

10. Differentiation A

Differentiate the following equation: $$\ln\left(\cos\left(x\right)\right) + \cos\left(5x\right)$$
Correct Answer
$$\frac{(-\sin\left(x\right))}{\cos\left(x\right)} - 5\sin\left(5x\right)$$


Other Articles:

Atomistic Simulation of Metals

This presents an interactive simulation of atoms making up a nanoscopic particle of metal.

Asciiship

My latest (early 2018) thing is just a "normal" game: no real physics. It's just a game.

BodyWorks: Kinematics Tool

A page with a javascript application where you can set body positions, calculate joint angles and animate human motion.




© Hugo2015. Session @sessionNumber