Maths Exam

1. Solution of linear equations

We have the following equations: $$\begin{eqnarray} 4 x -3 y &=& 2 \\ 2 x +y &=& 3 \end{eqnarray}$$
Correct Answer
$$ x=\frac{11}{10}, y=\frac{4}{5} $$

2. Differentiation A

Differentiate the following equation: $$2\exp\left(x\right) - \cos\left(x\right)\sqrt{x}$$
Correct Answer
$$2\exp\left(x\right) - \left((-\sin\left(x\right)\sqrt{x}) + \frac{\cos\left(x\right)}{2\sqrt{x}}\right)$$

3. Differentiation A

Differentiate the following equation: $$\cos\left(2x - \ln\left(x\right)\right)$$
Correct Answer
$$(-\sin\left(2x - \ln\left(x\right)\right)\left(2 - \frac{1}{x}\right))$$

4. Differentiation B

Differentiate the following equation: $$\frac{\cos\left(x\right)\ln\left(x\right)}{\sin\left(x + 4\right)}$$
Correct Answer
$$\frac{(-\sin\left(x\right)\ln\left(x\right)) + \frac{\cos\left(x\right)}{x}}{\sin\left(x + 4\right)} - \frac{\cos\left(x\right)\ln\left(x\right)\cos\left(x + 4\right)}{{\sin\left(x + 4\right)}^{2}}$$

5. Integration

Please carry out the following integral: $$ \int \cos\left(5x\right) dx$$
Correct Answer
$$ \frac{\sin\left(5x\right)}{5} $$

6. Integration

Please carry out the following integral: $$ \int \sin\left(-2x - 6\right) dx$$
Correct Answer
$$ \frac{\cos\left(-2x - 6\right)}{2} $$

7. Consider the following differential equation: $$ -5\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0 $$

Find the general solution to the above equation.
Correct Answer
$$ A\exp\left(\frac{(-x)}{5}\right) + B\exp\left(x\right) $$

8. Consider the following series: $$ \sum_{j=0}^{19} -4\left(j + 3\right) $$

What does the sum evaluate to?
Correct Answer
$$ -1000$$

9. Solution of linear equations

We have the following equations: $$\begin{eqnarray} x -2 y &=& 4 \\ 2 x +6y &=& 1 \end{eqnarray}$$
Correct Answer
$$ x=\frac{13}{5}, y=\frac{-7}{10} $$

10. Differentiation A

Differentiate the following equation: $$\cos\left(\exp\left(x\right) - \sqrt{x}\right)$$
Correct Answer
$$(-\sin\left(\exp\left(x\right) - \sqrt{x}\right)\left(\exp\left(x\right) - \frac{1}{2\sqrt{x}}\right))$$


Other Articles:

Quantum Mechanics for programmers

A quick demo showing how to make simulations of simple quantum mechanics systems in javascript.

How big should my spaceship be?

Physics Algorithms Book

This is a work in progress to write a book on physics algorithms. At the moment, it is about 1/3 finished though, but the latest version can be downloaded for free.




© Hugo2015. Session @sessionNumber