Positive forces act in the directions shown in the figure (ie, tension is positive).

The original, unloaded block is a darker gray with solid lines. The loaded block is a lighter gray with dashed lines.

Input Perpendicular Force Fy (in MN)

Input Shear Force Fxy (in MN)

Note: If loaded block isn't displayed properly, the block may have squished enough to invert itself! Try a smaller load.

Block has length 300 mm, height 100 mm, and depth 100 mm (rectangular cross-sectional area)

Challenges:

1. Write down the equations for displacements in x and y due to forces Fx, Fy, and Fxy.

2. Determine which value of Fx makes the loaded block stretch to the end of the Fx arrow.

3. Calculate the corresponding displacement in y due to the Fx for Q2.

4. Identify a combinations of loads that make the loaded block cover the entire "Fxy" in the picture.

5. Consider what would happen if the up arrow near Fxy was instead a down arrow (you can't do this in the simulation).

## AtmosphereA simple demo of a simulation of an atmosphere. It looks quite cool, but there's not a lot you can do with it yet, and the physics isn't yet all that accurate. |

## Quantum Mechanics for programmersA quick demo showing how to make simulations of simple quantum mechanics systems in javascript. |

## How to simulate fractal ice crystal growth in PythonThis presents python code to draw snowflakes, simulating a diffusion process with Fourier transforms. |

© Hugo2015. Session @sessionNumber