@Template

2D Mohr's Circle

Input normal and shear stresses to create Mohr's Circle.
Principal stresses, maximum shear stress, and theta_p are calculated and displayed.

Input Normal Stress σ_x (in Pa)
Input Normal Stress σ_y (in Pa)
Input Shear Stress 𝜏_xy (in Pa)

Challenges:
1. Input any combination of non-zero shear and normal stresses. Take a screenshot of the resulting Mohr's Circle. Now change the sign of the shear stress (if it was positive, make it negative; if it was negative, make it positive). Take a screenshot of the resulting Mohr's Circle. Note the differences and similarities. Explain why these occur.
2. Create a combination of shear and normal stresses that result in a theta_p of 0 degrees.
3. Create a combination of shear and normal stresses that result in a theta_p of 90 degrees.
4. Create a combination of shear and normal stresses that result in a theta_p of -90 degrees.


Other Articles:

How SpaceX land first stage boosters

The algorithms that SpaceX (probably) use to control their first stage boosters. Several animations.

Atomistic Simulation of Metals

This presents an interactive simulation of atoms making up a nanoscopic particle of metal.

Maths Exam Generator

Auto-generated maths exams, with and without answers. Set at A-level / end of high school / beginning of university.




© Hugo2015. Session @sessionNumber