2D Mohr's Circle

Input normal and shear stresses to create Mohr's Circle.
Principal stresses, maximum shear stress, and theta_p are calculated and displayed.

Input Normal Stress σ_x (in Pa)
Input Normal Stress σ_y (in Pa)
Input Shear Stress 𝜏_xy (in Pa)

Challenges:
1. Input any combination of non-zero shear and normal stresses. Take a screenshot of the resulting Mohr's Circle. Now change the sign of the shear stress (if it was positive, make it negative; if it was negative, make it positive). Take a screenshot of the resulting Mohr's Circle. Note the differences and similarities. Explain why these occur.
2. Create a combination of shear and normal stresses that result in a theta_p of 0 degrees.
3. Create a combination of shear and normal stresses that result in a theta_p of 90 degrees.
4. Create a combination of shear and normal stresses that result in a theta_p of -90 degrees.


Other Articles:

Atomistic Simulation of Metals

This presents an interactive simulation of atoms making up a nanoscopic particle of metal.

Maths Exam Generator

Auto-generated maths exams, with and without answers. Set at A-level / end of high school / beginning of university.

Atmosphere

A simple demo of a simulation of an atmosphere. It looks quite cool, but there's not a lot you can do with it yet, and the physics isn't yet all that accurate.




© Hugo2015. Session @sessionNumber