Maths Exam

1. Expand the Brackets

1. Expand the brackets to simplify the following:$$ -5\left(-3e + 2j\right) $$
Correct Answer
$$ 15e - 10j $$
2. Expand the brackets to simplify the following:$$ (-\left(3P + 4y\right)) $$
Correct Answer
$$ -3P - 4y $$

2. Expand the Brackets

1. Expand the brackets to simplify the following:$$ {\left(6a + 3y\right)}^{2} $$
Correct Answer
$$ 36{a}^{2} + 36ay + 9{y}^{2} $$
2. Expand the brackets to simplify the following:$$ {\left(-2X + 2h\right)}^{2} $$
Correct Answer
$$ 4{X}^{2} - 8Xh + 4{h}^{2} $$

3. Collect Like Terms

1. Collect like terms to simplify the following:$$ -4X + 5j + -6v + 4j $$
Correct Answer
$$ -4X + 9j - 6v $$
2. Collect like terms to simplify the following:$$ 6c + -3f + -4Z + (-f) $$
Correct Answer
$$ 6c + -4f - 4Z $$

4. Adding fractions

1. Simplify the following:$$ \frac{-6x + -5}{2x + 5} + \frac{4x + -6}{2x + 5} $$
Correct Answer
$$ \frac{-4{x}^{2} + -32x - 55}{4{x}^{2} + 20x + 25} $$
2. Simplify the following:$$ \frac{-3x + -3}{3x + -1} + \frac{5x + -3}{5x + -5} $$
Correct Answer
$$ \frac{18 - 14x}{15{x}^{2} - 20x + 5} $$

5. Evaluate the following equations.

1. Find k to 3 significant figures in the following equation: $$ k = \frac{\left(\ln\left(y\right) - \ln\left(z\right)\right)\left(z + \frac{5x}{z}\right)}{5},$$ Given that x = 5.0, y = 6.0, z = 4.0
Correct Answer
0.831
2. Find h to 3 significant figures in the following equation: $$ h = \frac{{2}^{y}\cos\left(-5y\right)}{xz},$$ Given that x = -2.0, y = 4.0, z = -1.0
Correct Answer
3.26

6. Rearrange the following equation.

1. Rearrange the following equation to get an expression for m: $$\frac{\left(z - 5 + \sqrt{y}\right)\left(-4x + y\right)}{4} = \frac{\frac{m}{y} + \ln\left(x\right)}{\cos\left(x - y\right)},$$
Correct Answer
$$m = \left(\frac{\left(z - 5 + \sqrt{y}\right)\left(-4x + y\right)}{4}\cos\left(x - y\right) - \ln\left(x\right)\right)y$$
2. Rearrange the following equation to get an expression for m: $$\frac{x - y}{\sqrt{z}} + \ln\left(\sqrt{z}\right) = \frac{\left(z + x - m\right)\sqrt{6}}{\sqrt{x}},$$
Correct Answer
$$m = z + x - \frac{\left(\frac{x - y}{\sqrt{z}} + \ln\left(\sqrt{z}\right)\right)\sqrt{x}}{\sqrt{6}}$$

7. Quadratic Equation

Solve the following equation to get a value for x:$$4{x}^{2} + 3x + -2 = 0$$
Correct Answer
$$\frac{\sqrt{41} - 3}{8}$$ and $$\frac{-3 - \sqrt{41}}{8}$$

8. Expand the Brackets

1. Expand the brackets to simplify the following:$$ 4\left(-2P + (-Y)\right) $$
Correct Answer
$$ -8P - 4Y $$
2. Expand the brackets to simplify the following:$$ 2\left(-4x + 3A\right) $$
Correct Answer
$$ -8x + 6A $$

9. Expand the Brackets

1. Expand the brackets to simplify the following:$$ {\left(5B + 5b\right)}^{2} $$
Correct Answer
$$ 25{B}^{2} + 50Bb + 25{b}^{2} $$
2. Expand the brackets to simplify the following:$$ {\left(-6P + -5A\right)}^{2} $$
Correct Answer
$$ 36{P}^{2} + 60PA + 25{A}^{2} $$

10. Collect Like Terms

1. Collect like terms to simplify the following:$$ (-X) + (-j) + -2m + 3j $$
Correct Answer
$$ (-X) + 2j - 2m $$
2. Collect like terms to simplify the following:$$ -3X + 2j + -6l + -6j $$
Correct Answer
$$ -3X + -4j - 6l $$


Other Articles:

The double slit and observers

A look at the double slit experiment. The first half is meant to be a clear explanation, using simulations. The second half discusses some of the philosophy / interpretations of quantum mecahnics.

German Gender and Case Game

Mars Re-Entry

A ThreeJS simulation of Mars re-entry in a spaceship.




© Hugo2015. Session @sessionNumber